H(t)=-16t^2+84t+7

Simple and best practice solution for H(t)=-16t^2+84t+7 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H(t)=-16t^2+84t+7 equation:



(H)=-16H^2+84H+7
We move all terms to the left:
(H)-(-16H^2+84H+7)=0
We get rid of parentheses
16H^2-84H+H-7=0
We add all the numbers together, and all the variables
16H^2-83H-7=0
a = 16; b = -83; c = -7;
Δ = b2-4ac
Δ = -832-4·16·(-7)
Δ = 7337
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-83)-\sqrt{7337}}{2*16}=\frac{83-\sqrt{7337}}{32} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-83)+\sqrt{7337}}{2*16}=\frac{83+\sqrt{7337}}{32} $

See similar equations:

| x-3=-2=7 | | -4x-11=10 | | 3=k/25 | | (2x+16)=(4x-14) | | 40000x+0.15=70000 | | -5x-(-13)=-12 | | -x/6-2=-3/4 | | 6y=5y(y+13) | | 6y=5y9y | | 2(x+6)+4x-24=180 | | x/3+x/2=105 | | 16=x^2-6 | | n=-3,n=0;n=1,n=3 | | -3x4=-16 | | x-6/4=4/x | | 3x^2+6x-11=-2 | | 90=2x+55 | | 72/w=8 | | 2x63-5x^2-2x+2=0 | | w7+3=5 | | -9t-13=-10t | | -12f-14=19-9f | | -(m+6)=3m+4 | | 18b-15=b+19b+19 | | 14+2x=80 | | 4-4x=8-12x+4 | | 20w+8=6w-16+18w | | (16-6x)-2(6-x)=4(1-4x) | | 6x+30=3x+15 | | 11m-12=5+12m | | -7+12k=11k | | 3x+30=3x+15 |

Equations solver categories